Name Class



www.MathsTeacherHub.com

# **Vectors**

(9-1) Topic booklet

These questions have been collated from previous years GCSE Mathematics papers.

**You must have:** Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

### Instructions

- •Use black ink or ball-point pen.
- •Fill in the boxes at the top of this page with your name, centre number and candidate number.
- •Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- •Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- •If the question is a **1F** question you are not allowed to use a calculator.
- •If the question is a **2F** or a **3F** question, you may use a calculator to help you answer.

#### Information

- •The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each question.

#### Advice

- •Read each question carefully before you start to answer it.
- •Keep an eye on the time.
- •Try to answer every question.
- •Check your answers if you have time at the end.

## **Answer ALL questions**

Write your answers in the space provided. You must write down all the stages in your working.

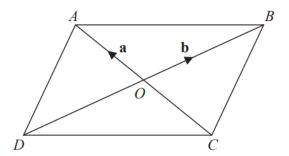
$$\mathbf{26} \ \mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$

Find  $2\mathbf{a} - 3\mathbf{b}$  as a column vector.

.....

May 2020 – Paper 2F

(Total for Question 26 is 2 marks)


$$\mathbf{26} \quad \mathbf{a} = \begin{pmatrix} 5 \\ 2 \end{pmatrix} \qquad \qquad \mathbf{b} = \begin{pmatrix} -1 \\ 7 \end{pmatrix}$$

Work out  $2\mathbf{a} + \mathbf{b}$  as a column vector.

······

May 2018 – Paper 1F

(Total for Question 26 is 2 marks)



ABCD is a parallelogram.

The diagonals of the parallelogram intersect at O.

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}$$

(a) Find, in terms of **b**, the vector  $\overrightarrow{DB}$ .

| <br> |  | <br> |  |  |  |  |  |  |  |  |  |   |   |   |   |   |  |  |  |  |  |  |  |  |  |  |  |  |
|------|--|------|--|--|--|--|--|--|--|--|--|---|---|---|---|---|--|--|--|--|--|--|--|--|--|--|--|--|
|      |  |      |  |  |  |  |  |  |  |  |  | ( | 1 | 1 | 1 | ) |  |  |  |  |  |  |  |  |  |  |  |  |

(b) Find, in terms of **a** and **b**, the vector  $\overrightarrow{AB}$ .

|  |  |  |  |  |  |  |  |  |  |  |  |  |  | ( |  |  | ) | ) |  |  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|--|---|---|--|--|--|--|--|--|--|--|--|--|--|--|--|

(c) Find, in terms of **a** and **b**, the vector  $\overrightarrow{AD}$ .

|  |  |  |  |  |  |  |  |  |  |  |  |  |   |   |   |   |   |  |  |  | - |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|---|---|---|--|--|--|---|--|--|--|--|--|--|--|
|  |  |  |  |  |  |  |  |  |  |  |  |  | ( | 1 | 1 | ) | ) |  |  |  |   |  |  |  |  |  |  |  |

June 2017 – Paper 1F

(Total for Question 27 is 3 marks)

$$\mathbf{29} \ \mathbf{a} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Work out  $\mathbf{a} - 2\mathbf{b}$  as a column vector.

······)

June 2019 – Paper 2F

(Total for Question 29 is 2 marks)

**30** Here are two column vectors.

$$\mathbf{a} = \begin{pmatrix} 5 \\ 2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

On the grid below, draw and label the vector  $\mathbf{a} - 2\mathbf{b}$ 



November 2019 – Paper 2F

(Total for Question 30 is 3 marks)

$$\mathbf{30} \ \mathbf{a} = \begin{pmatrix} 3 \\ -7 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

Work out  $\mathbf{b} - 2\mathbf{a}$  as a column vector.

| <br> | <br> |
|------|------|

Sample 1 – Paper 1F

(Total for Question 30 is 2 marks)